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ABSTRACT 

We study the endomorphism ring S of a Z-quasiprojective module M, giving 
necessary and sufficient conditions on M for S to have certain properties, such 
as, e.g., being QF or left (F)PF. 

The endomorphism ring S of a Y_,-quasiprojective module M has been 
studied in [5] by means of a category equivalence between a suitable quotient 
category of the category triM] of all R-modules subgenerated by M and the 
quotient category of S-Mod by the left Gabriel topology ~r of S given by 
, ~  = {I C sS [ M I  = M}. This study was based on the idea that this quotient 
category (S, ~r)-Mod carries a lot of information about S (or S- Mod), mainly 
due to the facts that S is an object of(S,  J ) - M o d  and the inclusion functor of 
(S, ~r)-Mod in S-Mod is exact, which, in particular, imply that finitely 
generated ~r-torsionfree left S-modules (and among them, finitely generated 
left ideals) belong to (S, :~')-Mod. Then we may transfer properties of S-Mod 
through the equivalence and interpret them in terms of M or of R-modules 
closely related to M. In the present paper, we continue this investigation and 
we observe that (S, ~r)-Mod has no less than three realizations up to equival- 
ence as a full subcategory of triM]; not only (S, ~ ) - M o d  is equivalent to the 
category ~[M]  introduced in [5] (~[M] is the quotient category of a[M] with 
respect to the natural torsion theory defined by M) but it is also equivalent to 
the category GF[M] of M-generated M-faithful modules, and to the category 
CD[M] of modules of M-codominant  dimension _>- 2. Since these categories 
have different properties in which regard their relationship with tr[M] and R- 
Mod, we use whichever is more convenient in order to study a specific 
property. 
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The construction of ~[M] for a Y-quasiprojective module M suggests the 

possibility of extending it to an arbitrary module. This is accomplished by 
considering the (hereditary) torsion theory of a[M] generated by all the 
modules of the form X/Xu, where X is a module of a[M] and Xu is the largest 
M-generated submodule of X. Then we may consider the quotient category of 
tr[M] by this torsion theory, which we still call ~[M]. ~[M] is a Grothendieck 
category and the image T(M) of Mby the canonical functor T : tr[M] --, ~[M] 
is a generator of ~[M]. In general, the endomorphism ring of T(M) is 
different from the endomorphism ring S of M, but if M satisfies certain 
additional conditions, such as, e.g., being M-faithful (i.e., torsionfree in a[M]) 
and quasiinjective, then M is isomorphic to T(M) and we may use the Gabriel- 
Popescu Theorem to represent ~[M] as a quotient category of S-Mod and, 
consequently, to study properties of S in terms of M. 

In the first section we study M-faithful modules, and we prove that i fMis  a 
Z-quasiprojective module, then the categories GF[M] and CD[M] are equiva- 
lent to (S, ~) -Mod (Theorem 1.3). The second section is devoted to the study 
of self-injective and quasi-Frobenius (QF) endomorphism rings. By using the 
category r~[M] we show that if M is M-faithful, then S = End(nM) is left 
self-injective if and only if M is a quasiinjective module (Theorem 2.7). This 
leads to a characterization of the M-faithful modules M such that S is a quasi- 
Frobenius ring. 

In the last part of the paper we consider several classes of rings which 
generalize QF rings, such as (left) Kasch rings, PF rings, FPF rings and QF-3' 
rings. For instance, we show in Theorem 3.5 that if M is a M-faithful 
quasiprojective module, then S is left PF if and only if M is a quasiinjective 
module which is either finitely cogenerated or a finitely generated RZ-module 
(M is a RZ-module when it cogenerates each of its simple quotients). This 
extends results of Onodera [ 14] and Rutter [ 17]. We also show that, with M as 
in Theorem 3.5, S is left PF if and only i fM is finitely generated and every M- 
generated module which cogenerates M generates M. For projective modules 
this condition is quite close to (and weaker than) that of being a PF module in 
the sense of Page [15]. In fact, we show in Proposition 3.7 that PF modules in 
the sense of Page are the same as PF modules in the sense of Rutter [ 17]. 

FPF endomorphism rings (R is left FPF if each finitely generated faithful R- 

module is a generator of R-Mod) have been recently studied in [15], where a 
sufficient condition is given for the endomorphism ring of a finitely generated 
projective module P to be left FPF, showing also that if P is a self-generator, 
then that condition is also necessary [ 15, Theorem 4]. We extend this result to 
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Z-quasiprojective modules and show that the converse holds without the 
assumption of M being a finitely generated self-generator (Theorem 3.10). 

Finally, we study when the endomorphism ring of a Y-quasiprojective 
module is a left QF-3' ring, generalizing results of [ 13]. 

Throughout this paper R denotes an associative ring with identity and R- 
Mod the category of left R-modules. All modules will be left R-modules, unless 
otherwise stated. I f M  is a module, then we will say that a module N is (finitely) 
M-generated if it is a quotient of a (finite) direct sum M (n of copies of M. When 
every submodule of M is M-generated, M is called a self-generator. The full 
subcategory of R-Mod consisting of the submodules of M-generated modules 
(M-subgenerated modules) will be denoted by a[M]; it is a Grothendieck 
category [21]. We will denote by XM the largest M-generated submodule of a 
module X. 

We recall that a module N is M-projective (M-injective) if, for every 
quotient module (submodule) X of M, the canonical homomorphism 

HomR(N, M) ~ HomR(N, X) (HOmR(M, N) ~ H0mR(X, N)) 

is an epimorphism and, in particular, M is quasiprojective (quasiinjective) 
when it is M-projective (M-injective). M is a projective object of a[M] if and 
only i f M  is Z-quasiprojective, that is, Mcn is quasiprojective for each set I (see 
[5]). 

I fNis  a left R-module,  then its (Jacobson) radical will be denoted by Rad(N) 
and a similar notation will be used for the radical of an object in a Grothen- 
dieck category. 

In what follows we will denote by S = End(nM) the endomorphism ring of a 
left R-module M (when dealing with endomorphism rings, we use the conven- 
tion of writing endomorphisms opposite scalars). There are canonical 
homomorphisms 

M f~ M*---,R and M* ~ M ~ S  (M*=HomR(M,R) )  
s R 

whose images T and T' are two-sided ideals of R and S, respectively. T is the 
largest M-generated left ideal of R and is called the trace of M. M is called 
trace-accessible if TM = M [22]. 

If o~ is a left Gabriel topology on a ring R, then the quotient category 
(R, ~ ')-Mod associated with ~ is the full subcategory of R-Mod whose objects 
are the ~-c losed (.~-torsionfree and ~-inject ive)  modules. The functor a:  
R-Mod ~ (R, ~ ) - M o d  which assigns to each module its module of quotients 
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(regarded as an object of (R, ~ ) -Mod)  is an exact left adjoint of  the inclusion 

functor and hence (R, ~ ) - M o d  is a Grothendieck category ([19]). 

We refer the reader to [2], [7], [16], and [19] for all the ring-theoretic and 

torsion-theoretic notions used in the text. 

I. M-faithful modules 

Let M be a left R-module and J the smallest torsion class of  a[M] which 

contains all the modules of the form X/XM with X in aiM]. Since any 

submodule of X/XM is also of this form, it is easy to see in an analogous way to 

[ 19, Prop. 3.3, p. 141 ] that ~-- is actually a hereditary torsion class of  aiM]. The 

.T-torsionfree modules of a[M] will be called M-faithful modules and they 

may be characterized in the following way: 

PROPOSITION 1.1. Let M be a left R-module and N a module o f  a[M]. Then 
N is M-faithful i f  and only if, for every nonzero homomorphism g : X ~ N, with 
X in aiM], there exists f :  M ---, X such that g o f ~ O. 

PROOF. If N is a M-subgenerated module which is not M-faithful, then 

there exists X in a[M] such that HomR(X/XM, N) v~ O. If h : X/XM ~ N  is a 

nonzero homomorphism, composing with the canonical projection from X to 

X/XM we get a nonzero homomorphism g : X - - , N  such that XM c Kerg.  

Therefore, for every f :  M ~ X we have that Im f c XM C Ker g and hence 
go f = 0 .  

Conversely, assume that there exists a M-subgenerated module X and a 

nonzero homomorphism g : X ~ N such that for every f :  M --* X, g o f =  0. 

Then it is clear that XM C Ker g and this gives a nonzero homomorphism from 
X/XM to N, SO that N is not M-faithful. 

REMARKS. Note that if tr[M] = R-Mod, then a left R-module N is M- 

faithful if and only if N is M-distinguished in the sense of [12]. Also, M is a 

generator of a[M] (i.e., a E-self-generator in the terminology of [22]) if and 

only if every M-subgenerated module is M-faithful. On the other hand, if 

R = Z and M -- Q, then a[Q] = Z-Mod and there are no nonzero Q-faithful 

Z-modules. 

In case M is quasiprojective, we have a better description of  M-faithful 

modules: 

PROPOSITION 1.2. Let M be a quasiprojective R-module. Then a M-subgen- 
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erated module N is M-faithful i f  and only i f  Hom~(M, X) ~ 0, for every 

submodule X o f  N. 

PROOF. Assume first that N is not M-faithful. Then there exist a M- 

subgenerated module X and a nonzero homomorphism f :  X/XM ~ N. Let 

p : X ~ X/XM be the canonical projection. Sincefo p ÷ 0, there exists a finitely 

generated submodule Z of  X such that ( f  o p)(Z) ~ 0. Thus we get a homomor- 

phism q : Z/ZM --" X/XM such tha t fo  q ~ 0 and so Y' = I m ( f o  q) is a nonzero 

submodule of N which is a quotient of Z. Let g : Z --- Y' be an epimorphism. 

Since Z is finitely generated, it is isomorphic to a submodule of  a finitely M- 

generated module and thus it is clear that Mis  Z-projective (using, for instance 

[2, 16.12]). Therefore, ifh ~HomR(M,  Y'), then h factors through g, h = g o u 

and since Im u c ZM c Kerg ,  we see that h = 0, so that HomR(M, Y') = 0. 

Conversely, if there exists a nonzero submodule X of N such that XM = O, 

then HomR(X/XM, N) = HomR(X, N) ~ 0 and so N is not M-faithful. 

REMARKS. In [5] we called a module NM-faithful if it satisfies that XM ~ 0 

for every nonzero submodule X of N. Thus we see that i f M  is quasiprojective 

and N is M-subgenerated, both definitions agree. 

If M is a E-quasiprojective module, then it is easy to see that the class of 

modules N of a[M] such that H omR (M, N) = 0 is a hereditary torsion class of 

a[M] (see [5]). The corresponding torsionfree class consists of the M-faithful 
modules of  a[M] and thus it follows from Proposition 1.2 that in this case 

~- = ( N E a [ M ]  I HomR(M, N) = 0}. In the particular case that Mi s  a projec- 

tive R-module, then we see that the M-faithful modules are precisely the M- 

distinguished ([ 12]) modules of  aiM]. If T denotes the trace of the projective 

module M on R, then these are just the T-faithful modules in the sense of[18]. 

If M is a left R-module, we will denote by t the left exact radical of a[M] 

defined by the hereditary torsion class ~-- and for each N of a[M] we set 

= N/t(N). Thus the M-faithful modules are precisely the M-subgenerated 

modules N such that N = N. We will denote by GF[M] the full subcategory of 

R-Mod determined by the M-generated M-faithful modules. We recall that a 

module X is said to have M-codominant dimension > n, denoted M-cod. 

dim X > n, if there exists an exact sequence Xn . . . . .  X1 ~ X---- 0, where 

each Xi is isomorphic to a direct sum of copies of  M. CD[M] will be the full 

subcategory of R-Mod whose objects are the modules of  M-codominant 

dimension > 2. 

THEOREM 1.3. Let M be a E-quasiprojective module, S = End(~M) and J 
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the two-sided ideal of  S consisting of the endomorphisms which factor through a 

finitely generated submodule of  M. Then J is an idempotent ideal o f  S and hence 
:~ = {I C sS [J c I} = {I c sS [MI = M} is a left Gabriel topology of S. 
Moreover, the following assertions hold: 

(i) HomR(M, - ) : CD[M] ~ (S, ~ ) - M o d  and M ~ s  - : (S, ~')-Mod 
CD[M] are inverse equivalences of categories. 

(ii) HomR (M, - ) : GF[M] ~ (S, ~ ')-Mod is an equivalence of  categories 

with inverse given by Y ~ M ~ s  Y. 
In particular, ~ = {S} if  and only i f  M is finitely generated and in this case 
HomR(M, - ) induces equivalences from CD[M] and GF[M] to S-Mod. 

PROOF. It is clear that J is a two-sided ideal of  S. To show that it is 

idempotent, notice that M, being Y.-quasiprojective, is a direct summand of a 

direct sum of finitely generated modules (we may take the family of all the 
finitely generated submodules of M and write M as a quotient of  their direct 

sum). Then, as in the proof of [8, Theorem 2.1 ], we may find for each x ~ M an 

element s E J  such that s(x)= x. This shows that MJ =-M and hence that 
MJ 2 = M. Therefore, it is enough to show that J is the smallest left ideal of S 

with the property that MJ = M. Assume that MI = M for I Cs S. To prove 

that J c I, it will suffice to show that i fL  is a finitely generated submodule of 

M, then the left ideal HomR(M, L) of S is contained in I. Let {Xl . . . . .  x, } be a 

generating set of  L. Since MI = M, we may find an r _-> 0 and a homomor- 

phism f :  M r ~ M such that xi E I m  f,  i = 1 . . . . .  n, and if we denote by 

qj: M ~ M  r the canonical injections (j  = 1 , . . . ,  r), then each f ,  qj belongs to 
I. Thus there exists a submodule N c M',  with canonical injection u : N ~ M r 
such that f (N) = L. I fg  E S factors through L, then by the quasiprojectivity of 
M w e  get h : M ~ Nsuch tha t fo  u o h = g. Callingpj : M r ~ M t o  the canonical 
projections, this means that in S we have g = Z[ (pj o u o h)(fo qj). Since each 

f o  qj E l ,  we see that g belongs to I also, and hence J c I. By [19, Prop. 6.11, p. 
150], the set ~ = (I  c sS [ J c I} = {I c sS [ M1 = M} is a left Gabriel topo- 

logy of S. 

To prove (i), consider the functor HomR(M, - ) :  CD[M]---S-Mod. We 

claim that it factors through the inclusion functor from (S, ~ ) - M o d  to S-Mod 

and hence defines a functor HomR(M, - ) :CD[M]- - - - (S ,  ~) -Mod.  A left 

S-module Yis o~'-closed (i.e., an object of  the quotient category (S, ~) -Mod)  if 

and only if the canonical homomorphism Y----Homs(J, Y) is an isomorphism 

[19, Example 3, p. 200]. In order to see that this holds for Y = HomR(M, N), 

with Na  module of CD[M] (in fact, Ncould be taken to be any left R-module), 

we first show that for any left ideal I of  S, the canonical homomorphism 
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M ~sI-- 'M has torsion kernel in a[M]. Assume first that I is finitely 
generated; then it follows from [8, Lemma 1.1] that the canonical homomor- 
phism a:I- 'HomR(M,M QsI) is an isomorphism. This shows that if 

K = Ker(M Qs I ~ M), then HOmR (M, K) = 0 and so K is a torsion module 

of a[M]. Now, i f / i s  an arbitrary left ideal of  S, we may write I as a direct limit 

I = lirq Ij of finitely generated left ideals Ij and if ~ = Ker(M t~ s/i ~ M), we 

have that the kernel of M ~ s  I--- M is isomorphic to ~ Kj and hence it is a 
torsion module of a[M]. Therefore, for any M-faithful module X of a[M], 
there is an isomorphism HomR(M ~ s  J,  X)--~ HomR(M, X). Thus we have 

isomorphisms: 

Homs(J, HomR(M, N)) ~-- Homs(J, HomR(M, N))~-- HomR (M ~ s J, N) 

~-- HomR(M, N) ~-- HomR(M, N) 

which show that HomR(M, N) is a ~-closed module. 

Next, we are going to show that HomR(M, - ) : CD[M] --- (S, :~)-Mod and 

M @s - : (S, o~)-Mod----CD[M] are inverse equivalences. If we start with a 

module N of CD[M], then we know from [8, Theorem 2.1] that the canonical 

homomorphism fl = flu : M ~s HomR(M, N) ~ N has torsion kernel and co- 
kernel. Since N is M-generated, fl is obviously an epimorphism in this case. On 
the other hand, using a Schanuel's lemma argument in a[M] to compare the 

exact sequence 0 ~ K e r f l  ~ M  QsHOmR(M, N)---,N---,O with an exact se- 
quence of the form 0 --* L ~ M a) ~ N ~ 0, where L is M-generated, we see that 

Ker fl is also M-generated, so that Ker fl = 0 and fl is an isomorphism. Now, let 
Y be a ~-closed S-module and a=ay: Y--'HomR(M,M Qs Y) the 
canonical homomorphism. In order to complete the proof of (i), we show that 

a is an isomorphism. If we call a ,  to the homomorphism M ~ s  Y--" 

M QsHOmR(M, M ~)s Y) obtained by tensoring with Ms, we have that 

tiM, r ° a ,  = 1 and since, as we have already seen, tiM, r is an isomorphism (for 

M ~)s Ybelongs to CD[M]), we have that a ,  is also an isomorphism. Then, if 

K = Ker a, the canonical homomorphism M ~ s  K--*M ~ s  Y is the zero 
homomorphism. We have already seen that M ~)s I ~ M has torsion kernel 

for every left ideal I of S. Now, by using standard arguments like in [19, Prop. 

10.4 and Prop. 10.6, pp. 34-45] (but with an injective cogenerator of  the 

torsion theory defined by M in a[M] instead of an injective cogenerator of all 
R-Mod) we get that, more generally, for each monomorphism Z ~ Z '  of  

S-Mod, the homomorphism M ~ s  Z----M t~ s Z'  has torsion kernel. There- 

fore, M ~ s  K is a torsion module of a[M] and since it is also M-generated, 
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M ~ s  K = 0. Using again the above argument we see that M ~ s  K' = 0 for 

every submodule K' of  K and this implies (see, e.g. [19, p. 15 6]) that K is a ~ -  

torsion module. Since Y is ~-torsionfree we have that K = 0. On the other 
hand, we have also that if  C = Coker a, then M @s C = Coker a ,  = 0 and, as 

before, this implies that C is ~-torsion. But since Y is a ~'-closed submodule 

of  the ~-closed module HomR(M, M ~ s  Y), we must have that C is also 

,~-torsionfree [7, Prop. 5.1], so that C = 0. This shows that a is an isomor- 

phism, finishing the proof of (i). 
To prove (ii), observe that there are functors 

M Q HomR(M, - ) :  GF[M]----CD[M] and - : C D [ M ] ~ G F [ M ]  
S 

(the last one defined by setting X ~ X). We claim that these two functors are 

inverse equivalences of categories. Since, as we have already mentioned, the 

canonical homomorphism fl : M Qs HomR (M, N) ~ N has torsion kernel and 

cokernel for each N in tr[M], it is clear that if N belongs to GF[M], then fl 
induces an isomorphism from M ¢gsHOmR(M, N) to N. Also, the above 

proof shows that M Qs HomR(M, X) = M ~ s  HomR(M, X) --~ X for each X 
in CD[M]. Now, if we compose these equivalences with the ones obtained in 

(i) we see that, since f l ,  : HomR(M, M t~s HomR(M, N))--'HomR(M, N) is 

an isomorphism, the functors HomR(M, - ) and M Gs - are inverse equiv- 

alences between GF[M] and (S, ~) -Mod.  

Finally, the last part of  the statement of Theorem 1.3 is now immediate. 

COROLLARY 1.4. Let M be a E-quasiprojective module. Then CD[M] and 
GF[M] are Grothendieck categories with projective generators M and 571, 
respectively. 

The equivalent categories GF[M] and CD[M] may be different. Actually, we 

have: 

PROPOSITION 1.5. Let M be a E-quasiprojective module. Then the following 
conditions are equivalent: 

(i) GF[M] c CD[M]. 

(ii) CD[M] c GF[M]. 
(iii) M is M-faithful and the inclusion functor of GF[M] in a[M] is left exact. 
(iv) M is a selfgenerator. 

In particular, when any of these conditions holds, GF[M] = CD[M] = a[M]. 

PROOF. ( i ) ~  (ii) Let X be a M-generated module and p : M  ~)--- X an 
epimorphism. Then )?belongs to GF[M] and ifp : M ~) --, Xis the composition 
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ofp  with the canonical projection from X to ,(', we see that, since by hypothesis 

M-cod. dim )? > 2, Ker p is M-generated. Since t(X) is a quotient of  Ker p, 

this means that t(X) = 0 and so X = .~', whence X is a module of GF[M]. 

(ii)=* (i) Let X be a module of  GF[M]. Then by Theorem 1.3 we have that 

X --~ M ~ s  HomR(M, X). Since M ~ s  Homk(M, X) belongs to CD[M] and 
hence by (ii) to GF[M], we see that X --~ M Qs  HomR(M, X) also belongs to 

CD[M]. 

(ii)=* (iii) If(ii) (and hence (i)) holds, then clearly GF[M] = CD[M] = triM] 
and thus (iii) is clearly verified. 

(iii)=*(iv) As in the proof of (i)=,(ii) we may see that every quotient 

module of  Mis  M-faithful. Therefore every submodule of M is the kernel in R- 

Mod of a morphism of  GF[M] and by (iii) it is M-generated. 
(iv) =, (i) Obvious. 

REMARK. The M-faithfulness of M is not sufficient for the verification of  

the equivalent conditions of Proposition 1.5. An example of a finitely gener- 

ated projective module P which is P-faithful but is not a self-generator may be 

obtained considering the ring R of 3 × 3 upper triangular matrices over a field 

and the idempotent e = (eo)~R, where e~ = e33 ---- l ,  eij = 0 otherwise. Then 
P = Re is a projective left ideal whose trace in R is T = ReR and clearly P is 

P-faithful. But if X c P is the submodule of all the matrices (ao) with 

a12 = a2~ = a22 = a31----a3~ = a3~ = 0, then X is not P-generated for, as it is 
easily seen, Ave - TXconsists of  the matrices (bo) which have b12 = 0 and zeros 
in the second and third rows (see also [1 5]). 

2. Self-injective endomorphism rings 

THEOREM 2.1. Let M be a left R-module, S = End(RM) and N a M-faithful 
module. I f  HomR(M, N) is injective as a left S-module, then N is M-injective. 
I f  for every left ideal I of S, the kernel of the canonical homomorphism 
M ~sI--- ,M is torsion in tr[M], then the converse holds. 

PROOF. Assume first that HomR(M, N) is injective as S-module. Let X be 

a R-submodule of M and I the left ideal of  S defined by I = HomR (M, X). The 

adjunction between the functors M ~ s  - and HomR(M, - ) gives a com- 

mutative diagram: 

HomR(M, N) ~ Homs(S, HomR(M, N)) 

H°mR (M Q I' N) -~ H°ms(I' H°mR(M' 
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in which the horizontal arrows are isomorphisms and the vertical arrow on the 
right is an epimorphism. Thus the vertical arrow on the left is also an 
epimorphism. This means that every homomorphism g:  M ~)s I--~ N factors 
through the canonical morphism u : M ~ s  ! -~ M and, since Im u = XM, each 
homomorphism h : XM ---~N extends to M. Now, if f :  X - ~ N  is a homomor- 

phism, we see that there exists t:  M ~ N such that t Ix,, = f Ix,,. Then t Ix - f 
factors through the projection X ~ X/Xu, and since X/Xu is a torsion module 
and N is M-faithful we get that t ix = f.  Then N is M-injective. 

Conversely, assume that N is M-injective and let I be a left ideal of  S. Since 

the kernel of the canonical morphism u : M ~ s  I -~ M is a torsion module of 
o[M] and N is M-faithful, we see that, i f f : M  ~ s I ~ N ,  then f factors 
through M ~ s  I ~ Im u = MI c M. Since N is M-injective, f e a n  be factored 
through u, and so in the above diagram, the vertical arrow on the left is an 
epimorphism. Thus the vertical arrow on the right is also an epimorphism and 
this implies that HomR(M, N) is an injective S-module. 

REMARKS. The same proof of Theorem 2.1 shows that the result is still 
valid if we take N a module (not necessarily of a[M]) such that its largest M- 
subgenerated submodule is M-faithful. On the other hand, a slight modifica- 
tion of the proof of Theorem 2.1 shows that, for any left R-module N, if 
HomR(M, N) is injective, then every homomorphism from a M-generated 

submodule o f M t o  N has an extension to M. If, moreover, Ms is fiat, then the 
converse holds. 

When Ms is fiat and N is M-faithful, then Theorem 2.1 says that 
HomR(M, N) is injective if and only i fN is M-injective. Similarly, we have for 
7_,-quasiprojective modules: 

COROLLARY 2.2. Let M be a Y-quasiprojective module and N a M-faithful 
module. Then HomR(M, N) is an injective S-module i f  and only i f  N is 
M-injective. In particular, S is left self-injective if  and only i f  M is 
quasiinjective. 

PROOV. As we have seen in the proof of Theorem 1.3, the canonical 
homomorphism M ~ s  I ~ M has torsion kernel in tr[M] for every left ideal I 
of  S and so Theorem 2.1 applies. For the last part note that, if M is 
,Y,-quasiprojective, then M is also Y_,-quasiprojective and .~t-faithful and S is 
isomorphic to End(Rh~r), so that the result follows from the first part. 

We will denote by E(X) the injective envelope of  a R-module X. 
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COROLLARY 2.3. Let P be a projective module with trace T and S = 
End(RP). Then, the following conditions are equivalent: 

(i) S is left self-injective. 
(ii) /5 = TE(P). 
(iii) HomR(T ~R T, P) is an injective left R-module. 

PROOF. Clearly, we have that, in this case, E(P)I, = E(t~)p = TE(P). Thus 
(ii) is equivalent to P being quasiinjective (see [1, Prop. 2.5]) and so the 
equivalence between (i) and (ii) follows from Corollary 2.2. 

To show that (i) is equivalent to (iii), consider the Gabriel topology of R 
defined by ~e = ( I  c R R I T  c I} and the Gabriel topology of S, ~ e =  
{J c sS ] T' c J} where T' is the trace of Pin S, i.e., the image of the canonical 
homomorphism P* QR P ~ S). Then there is an equivalence of categories 
between (R, ~e)-Mod and (S, ~e)-Mod in which Pj~ corresponds to S (which 
is a ~e-closed module) (see [4]). Thus S is left self-injective if and only if S is 
injective in (S, o~e)-Mod if and only if Pj, is injective in (R, ~re)-Mod if and 
only if P~ is injective in R-Mod [19, Prop. 1.7, p. 215]. But, using [19, 
Example 3, p. 260] we see that Pj~ "-. HomR(T t~R T, P) from which the result 
follows. 

COROLLARY 2.4. Let R be a commutative ring, M a finitely generated 
quasiprojective module and S = End(RM). The following conditions are 
equivalent: 

(i) S is a left selfinjective ring. 
(ii) M is quasiinjective. 
(iii) R/AnnR(M) is a self-injective ring. 

PROOF. From [9, Folgerung 2.34] it follows that M is a self-generator and 
in fact it is a projective generator of (R/AnnR(M))-Mod, so that S and 
R/AnnR(M) are Morita-equivalent rings. Thus the result is clear. 

PROPOSITION 2.5. Let P be a projective module and N a module of P-cod. 
dim >_- 2. I f  HomR(P, N) is an injective S-module, then ExtR(X, N) = 0 for 
every X such that P-cod. dim X >_- 3. I f  furthermore Ps is flat, then the converse 
holds. In particular, if  Ps is fiat, then S is left selfinjective if  and only if  
ExtR(X, P) = O for every Xsuch that P-cod. dim X >_- 3. 

PROOF. According to Theorem 1.3, there is an equivalence of categories 
between CD[P] and (S, ~r)-Mod (where ~" = {I c xSIPI  = P}), which is 
induced by HomR(P, -- ). If HomR(P, N) is an injective S-module, then it is 
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also an injective object of (S, ~ ) -Mod  and thus N is an injective object of 
CD[P]. Let Xbe a module of P-codominant dimension _>- 3 andp  : p<l)_., Xan 
epimorphism with K = Ker p. Then we get an exact sequence in R-Mod: 

HomR(P tl), N ) ~  HomR(K, N) & ExtR(X, N)---ExtR(P t/~, N) = 0, 

in which, since the inclusion of K in ptl) is clearly a monomorphism of CD[P], 
v = 0 and hence ExtR(X, N) = 0. 

For the converse note that, according to the proof of Theorem 2.1, 
HomR(P, N) is S-injective if and only if, for every left ideal I of S, every 
f :  P ~)s I ~ N  factors through the canonical homomorphism P ~)s I ~ P .  
Since Ps is flat, this is a monomorphism and also it is clear that P •s I has 
P-codominant dimension >_- 2, so that the condition of the Proposition holds. 

We now study when the endomorphism ring of a X-quasiprojective module 
is quasi-Frobenius (QF). 

PROPOSITION 2.6. Let M be a X-quasiprojective module andS = End(RM). 
The following conditions are equivalent: 

(i) S is QF. 
(ii) M is finitely generated and each M-injective module of GF[M] is 

isomorphic to a direct summand of M (J) for some set J. 
(iii) M is finitely generated and every direct summand of  h71 (J) is M-injective. 
(iv) M is finitely generated and each M-generated M-faithful module embeds 

in ~I (s) for some set J. 

PROOF. If Sis a QF ring, then sSis a cogenerator of S-Mod and hence, if we 
consider the Gabriel topology ~ = (I  c sS ] MI = M),  we see that, as S is 
~-torsionfree, every left S-module is #'-torsionfree. Thus # is trivial and 
hence M is finitely generated by Theorem 1.3. Therefore we may assume 
through all the proof that M is finitely generated and HomR(M, - ) :  
GF[M] ~ S-Mod is an equivalence. To see that (i) is equivalent to (ii), note 
that S is QF if and only if every injective S-module is projective, that is, if and 
only if every injective object of GF[M] is projective in GF[M]. Since A~¢ is a 
generator of GF[M] and the monomorphisms of GF[M] are just the injective 
homomorphisms, we see that an object of GF[M] is injective if and only if it is 
Al-injective [ 1, 1.14] and this is clearly equivalent to being M-injective. As 
is a projective generator of GF[M], the projective objects of GF[M] are 
precisely the direct summands (in GF[M] and also in R-Mod) of modules of 
the form M~J). 
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The equivalence between (i) and (iii) follows in a similar way (using the fact 

that S is QF if and only if every projective S-module is injcctivc) and thc 

equivalence between (i) and (iv) follows from thc fact that S is QF if and only if 

every left R-module cmbcds in a frcc module. 
If M is a M-faithful but not ncccssarily Z-quasiprojcctivc R-module, then it 

is still possible to use Thcorem 2. I to study when End(RM) is Icft sclf-injcctivc. 

Let M bc any left R-module and ~" the torsion class of a[M] defined in the 

beginning of § I. The full subcategory of a[M] determined by ~q" is a localizing 

subcatcgory [16, Theorem 6.3, p. 186] and thus there exists an associatcd 

quotient category which wc denote by ~[M], with canonical functor 
T : o[M]-- ~f[M]. T is an exact functor and has a right adjoint S : ~[M] 

aIM] which is full and faithful [16, pp. 172-176]. ~[M] is a Grothcndicck 
category [l 6, Corollary 6.2, p. 186]. 

THEOREM 2.7. Let M be a M-faithful module and S = End(RM). Then S is 
left self-injective if  and only if  RM is quasiinjective. 

PROOF. If S is left self-injective, then M is quasiinjective by Theorem 2.1. 
Then M is deafly ~r-injective, that is, every diagram in o'[M]: 

X " >Y 
/¢ 

i I 
/ I  

M 

with u a monomorphism such that Coker u E~- can be completed. But ~[M] 
can be identified with the full subcategory of o[M] determined by the M- 
faithful ~'-injective modules (see [ 16, p. 177] and [20]) and hence in this case 
M -- T(M) is an object of ~[M]. As in [1, Prop. 8.6], we may see that Mis  a 
generator of ~[M]. By the Gabriel-Popescu theorem [16, Theorem 14.2, p. 
248], the functor HomR(M, - ) :  ~ [ M ] ~ S - M o d  has an exact left adjoint. 
Since this functor factors in the form 

S Hom (M, - ) 
~[M] -- o[M] --, S-Mod, 

its left adjoint can be obtained by composing the left adjoint M ~ s  - 
of H o m R ( M , - )  with the left adjoint T of S. Thus the functor 
T(M ~ s  - ) : S-Mod ~ ~[M] is exact and this implies that if I is a left ideal 
of S, then T(M ~ s l  - , M )  is a monomorphism of ~[M]. By [16, Lemma 3.5, 
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p. 170], this is equivalent to the fact that Ker(M ~ s  I - - -M)  is a torsion 
module of triM] and hence Theorem 2.1 completes the proof. 

REMARKS. When M is a ]~-quasiprojective module, H o m R ( M , - )  
induces an equivalence between ~[M] and ( S , ~ ) - M o d  (with 

-- {I C sS [MI = M}) [5, Theorem 1.3]. This also follows from the fact 
that, as it can be readily shown, T :  a[M]--" ~[M] induces by restriction an 
equivalence between GF[M] and C6[M], with inverse given by X ~ X ~ .  
Nevertheless, unlike what happens in the hypotheses of Theorem 2.7, a 
M-faithful module M may not belong to ~6[M] (even in case M is also assumed 
to be projective). For instance, if X and P are the modules considered in the 
remark following Proposition 1.5 and f :  Xe ~ P is the homomorphism defined 
by f((bij)) = (cij) with c~z = b~3, cz3 = bll and cij = 0 otherwise, then f h a s  no 
extension to X. Also (for M E-quasiprojective) CD[M] may be different from 
~[M] and in fact CD[M] = ~[M] if and only if M is a self-generator. 

COROLLARY 2.8. Let U be a generator o fR-Mod and M = ~i~ an infinite 
direct sum of copies of U. Then S = End(RM) is left self-injective (fand only (fR 
is a quasi-Frobenius ring and R U is projective. 

PROOF. Clearly M is M-faithful and so S is left self-injective if and only if 
M is quasiinjective. Since M is a generator of R-Mod, this is in turn equivalent 
to M being an injective R-module [1, Coroll. 1.10]. By [2, Theorem 25.1] we 
have that U t J) is injective for every set J and therefore every projective left 
R-module is injective, so that R is QF. Moreover U, being injective, is also 
projective. The converse is clear. 

We recall that if M is a quasiinjective module, then a submodule X of M is 
said to be (finitely) closed if M / X  is (finitely) cogenerated by M [ 1 ]. Also, we 
will say that a submodule L of a module Nofa[M]  is saturated in Nin  case the 
quotient module N/L is M-faithful. Given a submodule X of N, we denote by 
X ~ the smallest saturated submodule of N containing X, so that X~/X = 
t(N/X). The ascending (descending) chain condition will be denoted by ACC 
(DCC). 

COROLLARY 2.9. Let M be a M-faithful module and S --- End(gM). The 
following conditions are equivalent: 

(i) S is a QF ring. 
(ii) M is quasiinjective and satisfies the DCC on M-generated submodules. 

(iii) M is quasiinjective and satisfies the DCC on (finitely) closed sub- 
modules. 
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(iv) M is quasiinjective and satisfies the ACC on M-generated submodules. 

PROOF. ( i ) ~  (ii) Since Sis left self-injective we have, by Theorem 2.7, that 

Mis  quasiinjective. On the other hand, S satisfies the DCC on left ideals of the 

form HomR(M, X), with X c M (because S is left artinian). These left ideals 

correspond by an order-preserving bijection to the M-generated submodules 

of  M and hence M has DCC on M-generated submodules. 

( i i )~(i i i )  Observe that, since M is M-faithful, any (finitely) closed sub- 

module X of M is saturated (because M / X  is cogenerated by the M-faithful 
module M). But it is clear that Y ~ YM defines an order-preserving injection, 

with left inverse Z ~ Z c, from the set of saturated submodules of M to the set 
of  M-generated submodules of M. Then, the DCC on M-generated submo- 

dules implies the DCC on (finitely) closed submodules. 

(iii) =~ (i) This follows from Theorem 2.7 and [ 1, Coroll. 4.3], because in this 
case S is left self-injective and right noetherian. 

( i )~( iv )  This is similar to ( i)~(i i) .  

( iv )~( i )  By Theorem 2.7, S is left self-injective. As in the proof of ( i i )~  

(iii), we see that it follows from (iv) that M satisfies the ACC on saturated 

submodules; and, as in the proof of Theorem 2.7, we have, by the Gabriel- 
Popescu Theorem, an equivalence of categories H o m R ( M , - ) :  ~[M]--* 

(S, ~) -Mod,  with ~ the left Gabriel topology of S consisting of the left ideals I 
such that T(M (~s S / I ) ~  O, or, equivalently, M/MI is a torsion module of 
a[M]. As in [5, Prop. 1.1], we have that there exists an isomorphism between 
the lattice of subobjects of M in ~[M] and the lattice of saturated submodules 

of M, so that in this case, M is a noetherian object of  q;[M] and, since S 
corresponds to M in the equivalence, S is a noetherian object of (S, ,~)-Mod. 

This means that S has the ACC on ,~-saturated left ideals [19, Coroll. 4.4, p. 
208]. Since every left annihilator of S is ,~-saturated (because S is ~¢,~- 

torsionfree) we see that S satisfies the ACC on left annihilators, which implies 
that S is QF [19, Theorem 3.5, p. 277]. 

REMARK. Note that from the proof of Corollary 2.9 it follows that, for a M- 

faithful module M, S is QF if and only i f M  is quasiinjective and satisfies the 

ACC (or the DCC) on saturated submodules. 

COROLLARY 2.10. Let M be a Y-quasiprojective module and S = End(RM). 

Then S is QF if and only if  f l  is a quasiinjective module with ACC (or DCC) on 
M-generated submodules. 

We recall that i fP  is a projective R-module with trace Tin R, then a left R- 
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module X is called T-accessible if TX = X, i.e., if X is P-generated; and a 

module N is T-noetherian (T-artinian) if it satisfies the ACC (DCC) on T- 

accessible submodules [1]. When P is finitely generated, P* is a finitely 
generated projective right R-module and its trace is also T[1, Lemma 8.10]. 

We will denote by P* the quotient of P* modulo its torsion submodule in 

a[P*]. 

COROLLARY 2.11. Let P be a projective module and S = End(RP). The 
following conditions are equivalent: 

(i) S is QF. 
(ii) P is T-artinian ( T-noetherian ) and 15 is quasiinjective. 
(iii) P is T-artinian ( T-noetherian ) and P* is quasiinjective. 

PROOF. The equivalence of (i) and (ii) follows from Corollary 2.9. The 

equivalence between (i) and (iii) follows from the fact that S is isomorphic to 

End(P*) and hence, by Theorem 2.7, S is right self-injective if and only if P* is 

quasiinjective. 

3. PF endomorphism rings 

We recall that a ring R is said to be left Kasch [19] (or right S-ring [11]) in 
case it has no proper dense left ideals. This amounts to saying that each simple 

left R-module is isomorphic to a minimal left ideal, or, equivalently, that 

E(RR) is a cogenerator of  R-Mod. On the other hand, a module M is called a 

RZ-module [20] if every simple quotient of M is cogenerated by M. We have: 

THEOREM 3.1. Let M be a Z-quasiprojective module, S = End(RM). The 
following conditions are equivalent: 

(i) S is a left Kasch ring. 
(ii) M is a finitely generated RZ-module. 
(iii) M is finitely generated and for every maximal M-generated submodule X 

of M there is a homomorphism flora M / X  to M with torsion kernel. 
(iv) M is finitely generated and every M-faithful module is cogenerated by 

E(JQ). 
PROOF. If S is left Kasch, then E(S) is a cogenerator of  S-Mod. If 

:~ = (I c sS [ MI = M}, then, since S is ~-torsionfree, so is E(S). Therefore, 

= (S} and M is finitely generated by Theorem 1.3. On the other hand, t(M) 

is always a superfluous submodule of M, because if X is a submodule of M such 

that X + t(M) = M, then X C + t(M) = X c = M and, since M is Z-quasiprojec- 

live, we get that X = M. From this, it follows easily that ;Q is finitely generated 
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if and only if M is. Thus we can make the general assumption that M is finitely 
generated and hence, by Theorem 1.3, we have equivalences of categories 
HomR(M, - ): GF[M]-~ S-Mod and HomR(M, - ): CD[M] ~ S-Mod. 

To see that (i) and (ii) are equivalent observe that, by the above equivalence, 
S is left Kasch if and only if every simple object of GF[M] is isomorphic to a 
subobject of M. It is easy to see that the simple objects of GF[M] are precisely 
the simple quotients of Air, and hence S is left Kasch if and only if (ii) holds. 

The equivalence between (i) and (iii) follows in a similar way. The equiv- 
alence of categories HomR(M, - ): CD[M]---S-Mod shows that (i) is equiv- 
alent to every simple object of CD[M] being isomorphic to a subobject of Min  
CD[M]. Clearly, the simple objects of CD[M] are the quotients of M modulo 
maximal M-generated submodules and it is easy to see (e.g., by using the 
equivalence with S-Mod) that the monomorphisms of CD[M] are just homo- 
morphisms whose kernel is a torsion module of a[M], from which the 
equivalence follows. 

Finally, the equivalence between (i) and (iv) is obtained by using the 
equivalence Homk(M, - ) : GF[M] --- S-Mod and the fact that S is left Kasch 
if and only ifE(S) is a cogenerator of S-Mod. This means that (i) is equivalent 
to the injective envelope of M in GF[M] being a cogenerator of GF[M]. On the 
other hand, if E(AI) denotes the injective envelope of M in R-Mod, then it is 
clear that E(~t)M is an injective object of a[M] and hence of GF[M] and thus 
we see that EcrtMj(A/) = E(A/)M. Since products in GF[M] are calculated by 
taking the M-generated part of products in R-Mod, it is clear that if(iv) holds, 
then E(h~r)M is a cogenerator of GF[M] and hence S is left Kasch. Conversely, 
assume that E(.~r)M is a cogenerator of GF[M] and let X be a M-faithful 
module. Then XM is an object of GF[M] and so it is clear that there is a 
monomorphism from Xz to E(M) J, for some set J. But, obviously, XM is an 
essential submodule of X and the injectivity of E(M) J gives a monomorphism 
from X to E(M) J, which completes the proof. 

The following result extends [13, Th6or~me 2.1]. 

PROPOSITION 3.2. Let M be a Z-quasiprojective module and N a module 
such that M-cod. dim N > 2 and M is N-generated. Let S = End(RM) and 
S' = End(RN). Then the following conditions are equivalent: 

(i) S is left Kasch and N is a finitely generated quasiprojective module. 
(ii) S' is left Kasch and M is finitely generated. 

PROOF. (i)=* (ii) By Theorem 3.1 M is finitely generated and by Theorem 
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1.3 there is an equivalence between CD[M] and S-Mod. Since M is N- 
generated and coproducts in CD[M] coincide with coproducts in R-Mod, we 
see that N is a generator of CD[M]. Since by (i) N is a E-quasiprojective 
module, it is a projective object of e[M] and hence of CD[M]. On the other 
hand, since N is finitely generated there exists an epimorphism M n -~ N (in 
R-Mod and in CD[M]). Since M is clearly a finitely generated object of 
CD[M], we see that N is actually a finitely generated projective generator of 
CD[M] and hence, by the Gabriel-Popescu theorem, CD[M] is equivalent to 
S'-Mod. Therefore S and S' are Morita-equivalent rings and so S' is left Kasch. 

(ii)=~(i) As before, we have that N is a generator of CD[M]. By the 
Gabriel-Popescu theorem, there is an equivalence, induced by HomR(N, - ), 
between CD[M] and S'-Mod/~", where ,~' is a left Gabriel topology of S' such 
that S' is ~'-torsionfree. Since S' is left Kasch, the ~'-torsionfree module 
E(S') cogenerates S'-Mod and hence #"  is trivial, so that HomR(N, - ) :  
CD[M] ~ S'-Mod is an equivalence. By Theorem 1.3, CD[M] is also equiva- 
lent to S-Mod and hence S is a left Kasch ring. On the other hand, since N 
corresponds to S' in the equivalence between CD[M] and S'-Mod, N is a 
finitely generated projective object of CD[M]. Thus N is isomorphic to a direct 
summand of some M n and hence it is a finitely generated quasiprojective 
module. 

REMARK. If in Proposition 3.2 we take M = R, we get [13, Th~or~me 2.1]. 
Also, it follows from Proposition 3.2 that i fM is a finitely generated quasipro- 
jective module, then End(M t J)) is left Kasch if and only if End(RM) is left 
Kasch and J is finite. 

We will make use of the following lemma. 

LEMMA 3.3. Let M be a M-faithful quasiprojective module and S = 
End(Rm). Then sS is finitely cogenerated i f  and only i f  RM is finitely 
cogenerated. 

PROOF. Assume that ~M is finitely cogenerated, so that the socle Soc(RM) is 
a finitely generated essential submodule of M. By [ 1, Coroll. 4.10], the finitely 
M-generated submodules N of M correspond by an order-preserving bijection 
given by N---HomR(M, N) (with inverse X ~ M X )  to the finitely generated 
left ideals of S. Since M is M-faithful, the minimal finitely M-generated 
submodules of M are precisely the simple submodules of M and these 
correspond to the minimal left ideals of S. Thus it is clear that if Soc(~M) = 
(Dr Cj with each Cj simple, then Soc(sS) = ( ~  Hom(M, Cj) and hence Soc(sS) 
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is finitely generated. On the other hand, i f / i s  a finitely generated left ideal of S, 
then MI is a finitely M-generated submodule of M which contains (since 
Soc(RM) is essential in M) a simple submodule C and so I = HomR(M, MI) 
contains the minimal left ideal of S Homn(M, C). Thus Soc(sS) is essential 
and hence sS is finitely cogenerated. The converse is similar. 

We recall that a ring R is called left pseudo-Frobenius (PF) if R is an 
injective cogenerator of R-Mod, or, equivalently, R is left self-injective and nR 
is finitely cogenerated [ 10]. In order to study when the endomorphism ring of a 
quasiprojective module is left PF we first show: 

PROPOSITION 3.4. Let M be a M-faithful quasiprojective module. I f  S is a 
left PF ring, then M is finitely generated. 

PROOF. By [10, Coroll. 11.4.3], S = G~Ser where {el l i = 1 . . . . .  n} is a 
set of orthogonal idempotents and eiSer is a local ring, for each i. Taking 
M, = Met we have that M = E)~' Mr and End(Mr)= efler is local; therefore, 
each Mr is a indecomposable module. Since S is finitely cogenerated, so is M 
(Lemma 3.3) and thus each Mi has a simple submodule Ti, which, being 
M-faithful, is isomorphic to a quotient of M. 

On the other hand, M is quasiinjective by Theorem 2.1, and thus each Mi is 
M-injective [ 1, Prop. 1.4], that is, M~ is an injective object of a[M]. Since the 
injective envelope of T, in this category is E(T~)M and M~ is indecomposable we 

have that Mr = E(T~)M. 
Suppose now that {TI . . . . .  Tr} is a set of representatives of the isomor- 

phism classes of T~ . . . . .  T,. Accordingly, {Ml . . . . .  Mr } is a set of representa- 
tives of the isomorphism classes of Mt . . . . .  Mn, and since Homn (M, 7",.) ~ 0, 
we deduce that there exists s o m e j  of {1 . . . . .  r} such that HomR(Mj, T,) -~ 0, 
and thus Ti is a simple quotient o f M  i. On the other hand, we may see, as in the 
proof of [2, 17.19, (c)=*(a)] that each proper submodule of any Mj is 
superfluous and so Mj has a unique maximal submodule, which contains every 
proper submodule, that is, Mj is a local module. If we choose i' in {1 . . . . .  r} 
such that i' :~ i, then we have HomR(Mj,, 7",.,) :~ 0 for somej '  in { 1 . . . . .  r}, and 
j '  ~ j ,  for j '  = j  would imply that M r has two nonisomorphic simple quotients, 
which contradicts the fact that Mj is local. Therefore, we get for each 
i ~ {1 . . . . .  r} an index j ( i )E  {1 . . . . .  r} such that Mj~)is a local module and, 
since all the j( i)  are different, we see that M = ~ '  M, is a finite direct sum ot 
local modules (which are cyclic) and hence it is finitely generated. 

In [17] Rutter called PF modules to the finitely generated projective and 
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injective RZ-modules,  and showed that i fP  is a PF module, then S = End(RP) 
is a left PF ring. Also, in [14] it is shown that if P is a finitely cogenerated 
projective and injective RZ-module,  then S is left PF and, in fact, these 
modules are precisely the PF modules. We are going to extend these results, 
giving necessary and sufficient conditions for the endomorphism ring of a 
Y-quasiprojective module to be left PF. 

THEOREM 3.5. Let M be a M-faithful quasiprojective module. Then the 
following conditions are equivalent: 

(i) S is left PF. 
(ii) M is a finitely cogenerated quasiinjective module. 
(iii) M is a finitely generated quasiinjective RZ-module. 
(iv) M is a finitely generated quasiinjective module, which is semisimple 

modulo its radical and has essential socle. 
(v) M is finitely generated and every M-generated (M-generated M-faithful) 

module that cogenerates M generates M. 

PROOF. ( i )~( i i )  This follows from Theorem 2.7 and Lemma 3.3. 
To prove the equivalence of (i) with the remaining conditions observe that, 

by Proposition 3.4, it follows from (i) that M is a finitely generated R-module 
and thus in what follows we will assume that M is finitely generated. Then M is 
in fact Z-quasiprojective and we have as usual an equivalence HomR(M, - ) : 
GF[M] --- S-Mod. 

(i) ,=, (iii) Since R is left PF if and only if it is left self-injective and left 
Kasch, this follows from Theorems 2.7 and 3.1. 

(i),=, (iv) From the fact that HomR(M, - ) defines an equivalence between 
GF[M] and S-Mod we infer that S has essential left socle if and only i f M  has 
essential socle in the category GF[M]. Since the simple objects of GF[M] are 
clearly the M-faithful simple modules (i.e., the simple quotients of M), we see 
that the socle of M in GF[M] coincides with its socle in R-Mod, and hence S 
has essential left socle if and only if M has essential socle. By [10, Theorem 
12.5.2] S is left PF if and only if it is a left self-injective semilocal ring with 
essential left socle. Thus, by using Theorem 2.7 and the foregoing remarks, we 

see that to prove the equivalence of(i) and (iv) it will be enough to show that S 
is semiiocal if and only if M is semisimple modulo its radical. This is a 
consequence of the facts that, as it can be readily shown, Rad(M)--  

(Rad~Ftg~(M)) c and the cokernel of RadGFigj(M)--" M in GF[M] is precisely 
M/Rad(M) (see also [5, Prop. 3.7]). 

(i),=, (v) As it is well known, a ring S is left PF if and only if every faithful left 
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S-module is a generator of S-Mod, so that all we have to show is that in this 
case, this condition for S = End(RM) is equivalent to (v). Through the category 
equivalence between GF[M] and S-Mod we get that S is left PF if and only if 
every module of GF[M] which cogenerates M in GF[M] also generates M in 
GF[M]. Since the inclusion functor from GF[M] to R-Mod clearly preserves 
coproducts, monomorphisms and epimorphisms, we see that this condition 
amounts  to saying that every M-generated M-faithful module which cogener- 
ates M (or, equivalently, cogenerates M in GF[M], because the product in 
GF[M] of a family {Xi} is given by (1-I Xi)M) generates M. Now, if X is a 
M-generated module which cogenerates M, then, since M is M-faithful and 
the torsion functor of tr[M] preserves products (as a consequence of the fact 
that the torsion class .3- consists of the modules N of a[M] such that 
HomR(M, N) = 0) we see that also ,(  cogenerates M. Since `( is an object of 
GF[M] it follows that .(generates M, and thus so does X, which completes the 
proof. 

COROLLARY 3.6. Let M be a Z-quasiprojective module and S = End(RM). 
The following conditions are equivalent: 

(i) S is left PF. 
(ii) k~t is a finitely cogenerated quasiinjective module. 
(iii) M' is a finitely generated quasiinjective RZ-module. 
( iv ) )Q  is a finitely generated quasiinjective module which is semisimple 

modulo its radical and has essential socle. 
(v) M is finitely generated and every M-generated module that cogenerates 

~I generates ~71. 

REMARKS. In Theorem 3.5 and Corollary 3.6 we cannot leave out the 
hypotheses o f M ( o r  AI) being finitely generated in (iii), (iv) and (v) and finitely 
cogenerated in (ii). For instance, if M is a nonfinitely generated semisimple 
module, then all of the conditions (ii)-(v) (without the finiteness hypotheses) 

hold but (i) does not hold. 
I f P  is a projective module with trace T, then, as we have already observed P 

is quasiinjective if and only i fP  = TE(P). Thus we see that S = End(RP) is left 
PF if and only if P = TE(P) and P is either a finitely cogenerated module or a 

finitely generated RZ-module.  

We recall that i f P  is a projective module with trace T, a module X is called 
T-faithful if for any x of X, Tx = 0 implies x -- 0. This is clearly equivalent to 
X being a P-distinguished module, and also to Xe being a P-faithful module. 
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PROPOSITION 3.7. Let P be a finitely generated projective module. Then P is 
a PF module i f  and only i f  it is T-faithful and every module which cogenerates P 
generates P. 

PROOF. Assume that P is PF. Then P is finitely cogenerated [ 14, p. 695] and 
thus P = P [14, Lemma 1]. Therefore, each module X which cogenerates P 
does cogenerate it finitely and, since P is injective, X generates P. 

Conversely, if P is T-faithful and every module which cogenerates P 
generates P, then it follows from Corollary 3.6 that P is a RZ-module.  Since P 
is cogenerated by E(P), it is also (finitely) generated by E(P), which means that 
P is injective and completes the proof. 

COROLLARY 3.8. [14]. I f  P is either a PF module or a finitely cogenerated 
projective and injective RZ-module, then End(RP) is a left PF ring. 

PROOF. If P is PF, the result follows from Proposition 3.7 and Corollary 
3.6. In the other case, we see as in the proof  of Proposition 3.7 that P is P- 
faithful and so the result follows from Corollary 3.6. 

REMARKS. Proposition 3.7 shows that PF modules in the sense of  Page [15] 
are the same as PF modules in the sense of  Rutter [ 17] and thus it is stronger 
than [15, Proposition 3]. 

If P is a finitely generated projective module, the condition of  being a PF 
module is sufficient but not necessary for the endomorphism ring S = End(~P) 
to be left PF. For instance, if R is the ring of 2 × 2 upper triangular matrices 
over a field k and e is the idempotent  of R given by e = (eu), with ell ~--- 1, e0 = 0 
otherwise, then P = Re is a T-faithful projective simple R-module  and 
End(RP) --~ k. Nevertheless P is not an injective R-module  and thus it is not 
PF. 

On the other hand, there are finitely generated (and finitely cogenerated) 
projective and injective modules P such that End(RP) is left PF but P is not a 
RZ-module  (and hence P is not T-faithful), which shows, among other things, 
that we cannot substitute M for ~r  in Corollary 3.6. A simple example of this is 
obtained by considering the same ring as above and P '  = Re',  with e' = (e~) 
given by e~2 = 1, e~ = 0 otherwise. Then End(Re') "-, e'Re' ~-- k is PF and P '  is 
a finitely cogenerated injective module which is not a RZ-module  (P' is a 

simple module which is not cogenerated by P'). Nevertheless, if P is a T- 
faithful projective and injective module, then End(RP) is left PF if and only i fP  
is PF (this follows from Corollary 3.6; compare with [15, Coroll. 5]). 
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We will say that R is a PF ring if R is both left and right PF (these rings are 
also called rings with perfect duality [10] or cogenerator rings). 

COROLLARY 3.9. Let P be a finitely generated projective module with trace 
T. The following conditions are equivalent: 

(i) S is PF. 
(ii) /5 = TE(P), P* = E(P*)T and R/5 and P* are RZ-modules. 
(iii) /5 = TE(/5), P* = E(P*)T and R/5 and P~ are finitely cogenerated 

modules. 

PROOF. It follows from Corollary 3.6 applied to RP and P*. 

REMARK. The result of [20] that if R is PF and P is a finitely generated 
projective RZ-module,  then End(RP) is PF, follows also from Corollary 3.9 
using the fact that in this case P* is also a RZ-module  by [20, Prop. 1.3]. 

A ring R is said to be a left FPF ring if every finitely generated faithful left R- 
module is a generator [3]. In [15] a finitely generated projective module P is 
called a FPF module if every finitely P-generated module that cogenerates P 
generates P and P is T-faithful. Then, in [ 15, Theorem 4] it is shown that i fP  is 
a finitely generated projective T-faithful module, then P FPF implies that 
S = End(RP) is left FPF, and furthermore, if P is a self-generator, then the 
converse holds. The following result is more general and shows that the 
hypothesis that P is a self-generator is not needed in Page's result. 

THEOREM 3.10. Let M be a E-quasiprojective module. I f  S is a left FPF 
ring, then every finitely M-generated module that cogenerates f l  generates M. I/ 
M isfinitely generated, then the converse holds. 

PROOF. Consider the Gabriel topology , ~ =  {I C sS I M I = M } .  By 
Theorem 1.3 there is an equivalence HomR(M, - ): GF[M]- - (S ,  ~ ) -Mod.  
Since M is E-quasiprojective, it is a projective object of a[M] and hence 34 is a 
projective object of GF[M]; therefore, S is a projective object of (S, ~ ) - M o d  
and by [6, Coroll. 2.3] the inclusion functor of(S,  ~ ) - M o d  in S-Mod is exact. 

By using this fact, we see that i fS  is left FPF then the category (S, ~ ) - M o d  has 
the property that each object which is a quotient of some S" and cogenerates S 
generates S. This property may be transferred to GF[M] through the above 
equivalence of categories and t hus  we have that each finitely 3~r-generated 
module of GF[M] which cogenerates &¢ generates 3~r. If X is a finitely M- 
generated module which cogenerates jilt, then X is finitely 3~r-generated and, as 
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in the proof of Theorem 3.5, (i),~, (v), we see that )3 cogenerates M. Therefore, 
]/" generates/Q, and so X generates A/. 

For the converse observe that i f M  is finitely generated, then HomR (M, - ) : 
GF[M] --- S-Mod is an equivalence of categories, in which S corresponds to M. 
Our hypothesis clearly implies that any object of GF[M] which is finitely M- 
generated and cogenerates 3~t in GF[M] generates 3~t in GF[M]. By the above 
equivalence we have that S is left FPF. 

REMARK. The endomorphism ring of a nonfinitely generated M-faithful 
Z-quasiprojective module M such that each finitely M-generated module 
which cogenerates M generates M need not be left FPF. For instance, the 
endomorphism ring of an infinite dimensional vector space over a field is 

never left FPF [3, p. 3.13]. 

We recall that a ring R is said to be left TCE [ 13] if the class of torsionless left 
R-modules is closed under extensions. In [l 3, Th6or~me 1.1 ], it is shown that 
if P is a projective generator of R-Mod, then R is left TCE if and only if so is 
S = End(RP). We are going to give a more general result. 

PROPOSITION 3.1 1. Let M be a E-quasiprojective module and S = 

End(RM). The the following conditions are equivalent: 

(i) S is left TCE. 
(ii) I f  0 ~ X ~ Y ~ Z---, 0 is an exact sequence in R-Mod such that Y is 

M-generated and M-faithful, and XM and Z are cogenerated by M, then Y 

is cogenerated by M. 

PROOV. Let ~ = {I C sS ] 341 = M}. Then, in a similar way to the proof of 
[ 13, Th6or~me 1.1 ] it can be shown that S is left TCE if and only if the class of 
~-c losed torsionless S-modules is closed under extensions in (S, ~ ) -Mod.  
Since being torsionless for a ~-c losed module is exactly the same as being 
cogenerated by S in (S, ~ ) -Mod,  we may use the equivalence of categories 
between GF[M] and (S, ~ ) - M o d  to transfer this property to GF[M]. We get 
thus that S is left TCE if and only if the class of objects of GF[M] which are 
cogenerated by ;~r is closed under extensions (in GF[M]). But a sequence 

f g . 
X ~ Y ~ Zwl th  X, Y, Z i n  GF[M] is short exact in GF[M] if and only i f f  is 

injective, g is surjective, g o f = 0 and Ker g/Im f is torsion in a[M], that is, if 
and only if there is a short exact sequence in R-Mod 0 ~ K L Y g Z ~ 0 
such that X = KM and f '  Ix = f .  Since the product of copies of AI in GF[M] is 
given by l"IlJ~l = (MI)M (where A/I is the product in R-Mod and the projections 
are the obvious ones), we see that the class of objects of GF[M] that are 
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cogenerated by M in GF[M] is closed under extensions of GF[M] if and only if 
condition (ii) holds, and so the proof is complete. 

COROLLARY 3.12. Let M be a Z-quasiprojective self-generator. Then S is 
left TCE if  and only if  the class of modules cogenerated by M is closed under 
extensions in a[M]. 

Recall that a ring R is called left SZD if, for every pair of left R-modules N, 
M, such that N c M, HomR(M, R) = 0 implies HomR(N, R) = 0 (see [13]). 
The following result extends [l 3, Th~or~me 1.2]. 

PROPOSITION 3.13. Let M be a Z-quasiprojective module. Then S is left 
SZD if  and only if  for M-generated M-faithful modules X, Y, such that X c Y, 
HomR(Y, A~r) = 0 implies Hom~(X, A/) = 0. 

PROOF. Let ~ = {I C sS[MI = M} and (S, ~ ) -Mod  the quotient cat- 
egory corresponding to 3 ~'. As in the proof of [13, Th6or~me 1.2] we see that S 
is left SZD if and only if for ~'-closed modules K, L, with K C L 
Homs(L, S) = 0 implies Homs(K, S) = 0. By the equivalence of categories 
between (S, ~ ) -Mod  and GF[M], we see that S is left SZD if and only if 
GF[M] verifies the stated property. 

A ring R is called left QF-3' if E(RR) is a torsionless R-module. As it was 
remarked in [ 11 ] a ring R is left QF-3' if and only if it is left TCE and left SZD. 
Thus Propositions 3. l I and 3.13 give a characterization of Z-quasiprojective 
modules which have left QF-3' endomorphism ring. A different characteriza- 
tion is the following. 

THEOREM 3.14. Let M be a Z-quasiprojective module. Then the following 
conditions are equivalent: 

(i) S is left QF-3'. 
(ii) E(A/)M is cogenerated by )91. 
(iii) The class of M-generated modules which are cogenerated by )91 is closed 

under essential extensions. 

PROOF. ( i )~( i i )  Let ~r = {I C sS[MI = M}. Since S is ~r-closed, its 
injective envelope is the same in (S, ~r)-Mod as in S-Mod [19, Prop. 1.7, p. 
215] and since the inclusion functor from (S, ~r)-Mod to S-Mod preserves 
products (as it is left adjoint of the functor a) we see that S is left QF-Y if and 
only i fE(S)  is cogenerated by S in (S, J ) -Mod .  By the equivalence between 
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GF[M] and (S, ~)-Mod in which 3~t corresponds to S, we have that (i) is 
equivalent to the injective envelope of 2~t in GF[M] being cogenerated by M in 
this category. The injective envelope of A~t in GF[M] is E(3~t)~ and since the 
product in GF[M] is the largest M-generated submodule of the product in R- 
Mod, it is also clear that E(A~t)M is cogenerated by 2~t in GF[M] if and only if it 
is cogenerated by At' in R-Mod. 

(i) ~=* (iii) By [ 11, Prop. 1 ], S is left QF-3' if and only if the class of torsionless 
left S-modules is closed under essential extensions. We claim that this 
property is equivalent to the fact that the class of torsionless ~r-closed left S- 
modules is closed under essential extensions in (S, ~)-Mod (where 

--- (I  C sS I MI  = M}). Assume that S is left QF-3' and let X - -  Y be an 
essential monomorphism in (S, ~)-Mod with X torsionless. If Z is a nonzero 
submodule of Y, then Z c = {xE Y I(Z:  x)E3~ r) is a nonzero ~:-closed sub- 
module of Y [7, 5.4] and thus X n Z c v ~ O. But X n Z c = X c n z c = ( x  n Z y  

and so we have X N Z ~: 0, so that Y is also an essential extension of X in 
S-Mod. Therefore Y is torsionless. Conversely, if essential extensions in 
(S, ~)-Mod of torsionless ~-closed modules are torsionless and L is an 
essential extension of a torsionless left S-module K, then applying the functor 
a : S-Mod ~ (S, ~)-Mod to a monomorphism from Kto S J and using the facts 
that a is left exact and a(S J) --~ S J, we get a monomorphism (in (S, ~)-Mod 
and in S-Mod) from a(K) to S j. Also, since K is ~-torsionfree (because S is 
~-torsionfree) and essential in L, it is a well known fact that a(K) is essential 
(as a subobject in (S, ~)-Mod and also as a S-submodule) in a(L). Thus our 
hypothesis implies that a(L) is torsionless and since L, being ~-torsionfree, is 
a submodule of a(L) we get that L is also torsionless. 

Now, using the equivalence between GF[M] and (S, ~#r)-Mod we see that 
GF[M] has the property that the class of objects cogenerated by 2~r is closed 
under essential extensions in GF[M]. Since each nonzero submodule of a M- 
faithful module contains a nonzero M-generated submodule, it is clear that 
this condition is equivalent to (iii) and the proof is complete. 

D 
COROLLARY 3.15. Let M and N be Y-quasiprojective modules which gener- 

ate each other. Then End(RM) is left QF- 3' i f  and only i f  End(RN) is left QF-3'. 

PROOF. We have that in this case o[M] = or[N] and the torsion theories 
defined by M and N in e[M] are clearly the same. Moreover, A/~r and ATare both 

r 

projective generators of GF[M] and hence they generate each other in GF[M]. 
Therefore, condition (iii) of Theorem 3.14 holds for M if and only if it holds 
for N and thus the result follows. 
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REMARK. I f  in p a r t i c u l a r  we t ake  in C o r o l l a r y  3.15 N = RR a n d  M a 

p r o j e c t i v e  g e n e r a t o r  o f  R - M o d ,  t h e n  we  get  C o r o l l a i r e  1.3 o f  [13]. As  a 

c o n s e q u e n c e  o f  P r o p o s i t i o n s  3.1 1 a n d  3.13 we h a v e  tha t  a s i m i l a r  resu l t  to  

C o r o l l a r y  3.15 h o l d s  for  left  T C E  r ings  a n d  left  S Z D  rings.  
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